59,623 research outputs found

    Automating control system design via a multiobjective evolutionary algorithm

    Get PDF
    This chapter presents a performance-prioritized computer aided control system design (CACSD) methodology using a multi-objective evolutionary algorithm. The evolutionary CACSD approach unifies different control laws in both the time and frequency domains based upon performance satisfactions, without the need of aggregating different design criteria into a compromise function. It is shown that control engineers' expertise as well as settings on goal or priority for different preference on each performance requirement can be easily included and modified on-line according to the evolving trade-offs, which makes the controller design interactive, transparent and simple for real-time implementation. Advantages of the evolutionary CACSD methodology are illustrated upon a non-minimal phase plant control system, which offer a set of low-order Pareto optimal controllers satisfying all the conflicting performance requirements in the face of system constraints

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Carrier Frequency Offset Estimation for OFDM Systems using Repetitive Patterns

    Get PDF
    This paper deals with Carrier Frequency Offset (CFO) estimation for OFDM systems using repetitive patterns in the training symbol. A theoretical comparison based on Cramer Rao Bounds (CRB) for two kinds of CFO estimation methods has been presented in this paper. Through the comparison, it is shown that the performance of CFO estimation can be improved by exploiting the repetition property and the exact training symbol rather than exploiting the repetition property only. The selection of Q (number of repetition patterns) is discussed for both situations as well. Moreover, for exploiting the repetition and the exact training symbol, a new numerical procedure for the Maximum-Likelihood (ML) estimation is designed in this paper to save computational complexity. Analysis and numerical result are also given, demonstrating the conclusions in this paper

    A Formula for the Capacity of the General Gel'fand-Pinsker Channel

    Full text link
    We consider the Gel'fand-Pinsker problem in which the channel and state are general, i.e., possibly non-stationary, non-memoryless and non-ergodic. Using the information spectrum method and a non-trivial modification of the piggyback coding lemma by Wyner, we prove that the capacity can be expressed as an optimization over the difference of a spectral inf- and a spectral sup-mutual information rate. We consider various specializations including the case where the channel and state are memoryless but not necessarily stationary.Comment: Accepted to the IEEE Transactions on Communication

    Second-Order Asymptotics for the Discrete Memoryless MAC with Degraded Message Sets

    Get PDF
    This paper studies the second-order asymptotics of the discrete memoryless multiple-access channel with degraded message sets. For a fixed average error probability ϔ∈(0,1)\epsilon\in(0,1) and an arbitrary point on the boundary of the capacity region, we characterize the speed of convergence of rate pairs that converge to that point for codes that have asymptotic error probability no larger than Ï”\epsilon, thus complementing an analogous result given previously for the Gaussian setting.Comment: 5 Pages, 1 Figure. Follow-up paper of http://arxiv.org/abs/1310.1197. Accepted to ISIT 201

    Adaptive reference model predictive control for power electronics

    Get PDF
    An adaptive reference model predictive control (ARMPC) approach is proposed as an alternative means of controlling power converters in response to the issue of steady-state residual errors presented in power converters under the conventional model predictive control (MPC). Differing from other methods of eliminating steady-state errors of MPC based control, such as MPC with integrator, the proposed ARMPC is designed to track the so-called virtual references instead of the actual references. Subsequently, additional tuning is not required for different operating conditions. In this paper, ARMPC is applied to a single-phase full-bridge voltage source inverter (VSI). It is experimentally validated that ARMPC exhibits strength in substantially eliminating the residual errors in environment of model mismatch, load change, and input voltage change, which would otherwise be present under MPC control. Moreover, it is experimentally demonstrated that the proposed ARMPC shows a consistent erasion of steady-state errors, while the MPC with integrator performs inconsistently for different cases of model mismatch after a fixed tuning of the weighting factor

    Second-Order Asymptotics for the Classical Capacity of Image-Additive Quantum Channels

    Full text link
    We study non-asymptotic fundamental limits for transmitting classical information over memoryless quantum channels, i.e. we investigate the amount of classical information that can be transmitted when a quantum channel is used a finite number of times and a fixed, non-vanishing average error is permissible. We consider the classical capacity of quantum channels that are image-additive, including all classical to quantum channels, as well as the product state capacity of arbitrary quantum channels. In both cases we show that the non-asymptotic fundamental limit admits a second-order approximation that illustrates the speed at which the rate of optimal codes converges to the Holevo capacity as the blocklength tends to infinity. The behavior is governed by a new channel parameter, called channel dispersion, for which we provide a geometrical interpretation.Comment: v2: main results significantly generalized and improved; v3: extended to image-additive channels, change of title, journal versio

    Asymmetric Evaluations of Erasure and Undetected Error Probabilities

    Full text link
    The problem of channel coding with the erasure option is revisited for discrete memoryless channels. The interplay between the code rate, the undetected and total error probabilities is characterized. Using the information spectrum method, a sequence of codes of increasing blocklengths nn is designed to illustrate this tradeoff. Furthermore, for additive discrete memoryless channels with uniform input distribution, we establish that our analysis is tight with respect to the ensemble average. This is done by analysing the ensemble performance in terms of a tradeoff between the code rate, the undetected and the total errors. This tradeoff is parametrized by the threshold in a generalized likelihood ratio test. Two asymptotic regimes are studied. First, the code rate tends to the capacity of the channel at a rate slower than n−1/2n^{-1/2} corresponding to the moderate deviations regime. In this case, both error probabilities decay subexponentially and asymmetrically. The precise decay rates are characterized. Second, the code rate tends to capacity at a rate of n−1/2n^{-1/2}. In this case, the total error probability is asymptotically a positive constant while the undetected error probability decays as exp⁡(−bn1/2)\exp(- b n^{ 1/2}) for some b>0b>0. The proof techniques involve applications of a modified (or "shifted") version of the G\"artner-Ellis theorem and the type class enumerator method to characterize the asymptotic behavior of a sequence of cumulant generating functions.Comment: 28 pages, no figures in IEEE Transactions on Information Theory, 201
    • 

    corecore